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Abstract

We present the results from three motor-imagery-based Brain-Computer Interface

experiments. Brain signals were recorded from 8 untrained subjects using EEG,

4 using ECoG and 10 using MEG. In all cases, we aim to develop a system that

could be used for fast, reliable preliminary screening in the clinical application of

a BCI, so we aim to obtain the best possible classification performance in a short

time. Accordingly, the burden of adaptation is on the side of the computer rather

than the user, so we must adopt a machine-learning approach to the analysis. We

introduce the required machine-learning vocabulary and concepts, and then present

quantitative results that focus on two main issues. The first is the effect of the

number of trials—how long does the recording session need to be? We find that

good performance could be achieved, on average, after the first 200 trials in EEG,

75–100 trials in MEG, or 25–50 trials in ECoG. The second issue is the effect of

spatial filtering—we compare the performance of the original sensor signals with

that of the outputs of Independent Component Analysis and the Common Spatial

Pattern algorithm, in each of the three sensor types. We find that spatial filtering

does not help in MEG, helps a little in ECoG, and improves performance a great

deal in EEG. The unsupervised ICA algorithm performed at least as well as the

supervised CSP algorithm in all cases—the latter suffered from poor generalization

performance due to overfitting in ECoG and MEG, although this could be alleviated

by reducing the number of sensors used as input to the algorithm.
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1.1 Introduction

Many different recording technologies exist today for measuring brain activity. In

addition to electroencephalography (EEG) and invasive microelectrode recording

techniques which have been known for some time, research institutes and clinics

now have access to electrocorticography (ECoG), magnetoencephalography (MEG),

near-infrared spectrophotometry (NIRS), positron emission tomography (PET) and

functional magnetic resonance imaging (fMRI), any of which might be potentially

useful in the design and implementation of Brain-Computer Interface systems. Each

technology has its own particular set of advantages and limitations as regards

spatial and temporal resolution, as well as cost, portability and risk to the user.

Comparative studies are required in order to guide development, to explore the

trade-offs between these factors.

Bulky, expensive systems (PET, fMRI, MEG) cannot be deployed as day-to-day

BCI systems in users’ homes, but may offer advantages in the early stages of BCI

use. For example, they may be valuable for conducting screening procedures, in

which a potential user is scanned for one or two sessions in order to ascertain

what patterns of brain activity can be most clearly measured and most easily

modulated by voluntary intention. An ideal screening would give clinicians the

best possible basis on which to decide which task/stimulus setting the user should

invest time training with, and (if invasive methods are being considered) where

electrodes should be implanted. Regular periodic visits to the scanner might also

be a valuable part of early BCI training. However, to justify the cost of screening

and training in this way, we would need to know whether the technology yields

advantages, for example in terms of signal quality, efficiency, or precision of source

localization, that could not otherwise be obtained with cheaper methods.

Here we present a comparative study of motor-imagery BCI experiments based on

EEG, ECoG and MEG. In all three, our goal is to develop techniques of analysis that

could be used for efficient screening using a simple binary synchronous (trial-based)

paradigm, to determine whether subsequent lengthy training in motor imagery

might be worthwhile. This requires that we obtain good classification performance

as quickly as possible, ideally within the duration of a single recording session. In

longer-term user training regimes it might be desirable to fix the mapping between

brain activity and output a priori, with users learning to adjust their brain activity

such that the mapped recordings meet the desired output. However, in this shorter-

term setting, users arrive untrained and so do not necessarily know how to control

their brain activity in the optimal manner, which will often have a very user-specific

(and usually not well describable) subjective character. Users have relatively little

time to adjust and optimize their performance, yet we must still achieve the best

results we can. Therefore for current purposes the burden of adaptation in brain-

computer communication lies on the side of the computer—we follow the same

principle of “letting the machines learn” that guides the Berlin Brain-Computer

Interface project (Krauledat et al., 2004). We envisage screening as consisting of
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multiple discrete trials in which the user is repeatedly asked to produce brain-

states of different classes. The mapping from brain states to the desired output is

not known and has to be inferred from this limited set of example mappings—a

problem of empirical inference for which a machine learning approach is well suited.

After briefly describing the neurological basis of our studies, the recording

technologies and experimental setup, we will introduce some of the machine-learning

concepts, terms and tools we will need. We then describe our analysis procedure,

present results and conclude. In particular we will be interested in the question of

how many trials are necessary to yield good classification performance—in other

words, how soon could we have broken off the testing session, and still have obtained

comparable results?

1.2 Neurological Phenomena of Imagined Movement

When a person is neither moving nor about to move, the electrical activity of the

motor cortex is dominated by frequencies in the 8-12Hz (α-band) and 18–22Hz (β-

band) ranges. These signal components are often referred to as µ-rhythms, or more

generally as sensory-motor rhythms (SMR).

At the beginning of the planning phase about 1–1.5 seconds before a move-

ment is executed, the SMR gradually diminishes, an effect known as event-related

desynchronization (ERD). Slower shifts and deflections in electrical signal, known

as movement-related potentials (MRP), can also be observed at roughly the same

time. Both neurological phenomena can be recorded best over the motor cortex

contralateral to the movement.

It is known that ERD is also present when movements are only imagined (e.g.

Pfurtscheller. et al., 1998) or attempted (Kauhanen et al., 2004). Unfortunately,

not all users show ERD in motor imagery, although it is possible to train healthy

subjects (Guger et al., 2003) as well as patients with ALS (Kübler et al., 2005) to

control their SMR such that the recorded activity becomes more classifiable. When

present, ERD can be detected relatively easily and is therefore used in the majority

of BCI studies.

Using both aspects—MRP and ERD—of the recorded signal leads to improved

classification performance (Dornhege et al., 2003a), a result supported by the work

of Babiloni et al. (1999) who argue that MRP and ERD represent different aspects

of cortical processing. In the current study, however, only a very small minority of

our subjects showed useable MRPs in our imagined movement task—for simplicity,

we therefore focus our attention on ERD.

1.3 Recording Technology

Since our focus is on ERD, we can only consider recording methods that have

sufficient temporal resolution to capture changes in the α and β bands. This
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rules out technologies such as PET, fMRI and NIRS that rely on the detection

of regional changes in cerebral blood oxygenation levels. We briefly introduce the

three recording systems we have used: EEG, ECoG and MEG.

1.3.1 EEG

Extracranial electroencephalography is a well-studied recording technique for cere-

bral activity that has been practised since its invention by Hans Berger in 1929. It

measures electrical activity, mainly from the cortex, non-invasively: electrical sig-

nals of the order of 10−4 Volts are measured by passive electrodes (anything from

a single electrode to about 300) placed on the subject’s head, contact being made

between the skin and the electrode by a conducting gel. EEG shows a very high

temporal resolution of tens of milliseconds but is limited in its spatial resolution,

the signals being spatially blurred due to volume conduction in the intervening

tissue.

EEG experiments account for the large majority of BCI studies due to the

hardware’s low cost, low risk and portability. For a selection of EEG motor imagery

studies, see Wolpaw et al. (1997); Birch et al. (2003); McFarland et al. (1997); Guger

et al. (1999); Dornhege et al. (2004a); Lal et al. (2004).

1.3.2 ECoG

Electrocorticography or intracranial EEG is an invasive recording technique in

which an array of electrodes, for example an 8-by-8 grid, is placed surgically beneath

the skull, either outside or underneath the dura. Strips containing smaller numbers

of electrodes may also be inserted into deeper regions of the brain. Unlike invasive

microelectrode recording techniques, ECoG measures activity generated by large

cell populations—ECoG measurements are thus more comparable to extracranial

EEG, but the electrode’s close proximity to the cortex and the lack of intervening

tissue allows for a higher signal-to-noise ratio, better response at higher frequencies,

and a drastic reduction in spatial blurring between neighbouring electrode signals

and contamination by artefacts.

Naturally intracranial surgery is performed at some risk to the patient. Today,

ECoG implantation is not widespread, but is mostly carried out as a short-term

procedure for the localization of epileptic foci, prior to neurosurgical treatment of

severe epilepsy. Patients typically have electrodes implanted for one or two weeks for

this purpose, a window of opportunity that is being exploited to perform a variety

of brain research, including motor-imagery BCI (Graimann et al., 2004; Leuthardt

et al., 2004; Lal et al., 2005c).

1.3.3 MEG

Magnetoencephalography is a non-invasive recording technique for measuring the

tiny magnetic field fluctuations, of the order of 10−14 Tesla, induced by the electrical
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activity of populations of cerebral neurons—mainly those in the cortex, although

it has been reported that it is also possible to measure activity from deeper sub-

cortical structures (Llinas et al., 1999; Tesche and Karhu, 1997; Baillet et al., 2001).

Relative to fMRI, the spatial resolution of MEG is rather low due to the smaller

number of sensors (100-300), but it has a high temporal resolution comparable to

that of EEG, in the tens of milliseconds.

Due to the extremely low amplitude of the magnetic signals of interest, MEG

scanners must be installed in a magnetically shielded room to avoid the signals being

swamped by the earth’s magnetic field, and the sensors must be cooled, usually by

a large liquid helium cooling unit. MEG scanners are consequently rather expensive

and non-portable.

Kauhanen et al. (2004) presented an MEG study of sensory-motor rhythms during

attempted finger movements by tetraplegic patients. Very recently we introduced

an online motor-imagery-based BCI using MEG signals (Lal et al., 2005a).

1.4 Experimental Setup

Three experiments form the basis for this chapter: one using EEG (described in

more detail by Lal et al., 2004), one using ECoG (Lal et al., 2005c), and one based

on MEG recordings (Lal et al., 2005a).

There were 8 healthy subjects in the EEG experiment, seated in an armchair

in front of a computer monitor. 10 healthy subjects participated in the MEG

experiment, seated in the MEG scanner in front of a projector screen. In the ECoG

experiment, 4 patients with epilepsy took part, seated in their hospital bed facing

a monitor.

Table 1.1 contains an overview over the three experimental setups. Depending on

the setup, subjects performed up to 400 trials. Each trial began with a small fixation

cross displayed at the centre of the screen, indicating that the subject should not

move, and blink as little as possible. One second later the randomly chosen task

cue was displayed for 500 msec, instructing the subject to imagine performing one

of two different movements: these were left hand and right hand movement1 for

the EEG study, and movement of either the left little finger or the tongue2 for

the MEG and the ECoG studies (ECoG grids were implanted on the right cerebral

hemisphere). The imagined movement phase lasted at least 3 seconds, then the

fixation point was extinguished, marking the end of the trial. Between trials was a

short relaxation phase of randomized length between 2 and 4 seconds.

1. Visual cues: a small left- or right-pointing arrow, near the centre of the screen.
2. Visual cues: small pictures of either a hand with little finger extended, or of Einstein
sticking his tongue out.
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Table 1.1: Overview of the three experiments.

EEG ECoG MEG

subjects 8 4 10

trials per subject 400 100–200 200

sensors 39 64–84 150

sampling rate (Hz) 256 1000 625

1.5 Machine-Learning Concepts and Tools

The problem is one of binary classification, a very familiar setting in machine learn-

ing. Here we introduce some of the vocabulary of machine learning, in the context

of BCI, in order to explain the tools we use. For a more thorough introduction to

machine learning in BCI, see Müller et al. (2004).

For each subject, we have a number of data points, each associated with one of

two target labels—this is just an abstract way of stating that we have a number

of distinct trials, each of which is an attempt by the subject to communicate one

of two internal brain states. Each data point is a numerical description of a trial,

and its target label denotes whether the subject performed, for example, imagined

finger movement or imagined tongue movement on that trial. Classification is the

attempt to extract the relevant information from one subset of the data points (the

training subset, for which labels are given), to be able to predict as accurately as

possible the labels of another subset (the test subset, for which label information is

withheld until the time comes to evaluate final classification accuracy). Extraction

of the relevant information for prediction on unseen data is termed generalization

to the new data.

Each data point can be described by a large number of features, each feature

being (for the current purposes) a real number. The features are the dimensions of

the space in which the data points lie. We can choose the feature representation

by selecting our preprocessing: a single trial, measured and digitized as t time

samples from each of s sensors, may for example be fully described by the s times

t discrete sample values, and this feature representation may or may not be useful

for classification. An alternative feature representation might be the values that

make up the amplitude spectra of the s sensor readings—the same data points

have now been mapped into a different feature space, which may or may not entail

an improvement in the ease of classification.

Note that both of these feature representations specify the positions of data points

in very high-dimensional spaces. Successful generalization using a small number

of data points in a relatively high-dimensional space is a considerable challenge

(Friedman, 1988).
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1.5.1 Support Vector Machines

For classification, we choose a Support Vector Machine (SVM) which has proven its

worth in a very diverse range of classification problems from medical applications

(Lee et al., 2000) and image classification (Chapelle et al., 1999) to text catego-

rization (Joachims, 1998), and bioinformatics (Zien et al., 2000; Sonnenburg et al.,

2005). Its approach is to choose a decision boundary between classes such that the

margin, i.e. the distance in feature space between the boundary and the nearest

data point, is maximized—intuitively, one can see that this might result in a mini-

mized probability that a point, its position perturbed by random noise, might stray

over onto the wrong side of the boundary. Figure 1.1 shows a two-dimensional (i.e.

two-feature) example.

Figure 1.1: Linear SVM. The data are separated by a hyperplane with the largest

possible margin γ. For the separable case (ignoring misclassified points xi and xj)

the three ringed points lying exactly on the margin would be the support vectors

(SVs). For non-separable data sets, slack variables ξk are introduced—depending

on the scaling of these, more points will become SVs.

When one has more features to work on than data points, it is often all too

easy to find a decision boundary that separates the training data perfectly into two

classes, but which overfits. This means that the capacity of the classifier (loosely,

its allowable complexity—see Vapnik (1998) for the theoretical background) is too

large for the data, with the result that the classifier then models too precisely the

specific training data points it has seen, and does not generalize well to new test

data. Rather than attempting to separate all the data points perfectly, we may

obtain better generalization performance if we allow for the possibility that some

of the data points, due to noise in the measurement or other random factors, are
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simply on the wrong side of the decision boundary. For the SVM, this leads to the

soft-margin formulation:

f : R
d → {−1, 1}, x 7→ sign(w∗ · x + b∗)

(w∗, b∗) = argmin
w∈Rd, b∈R

‖w‖2

2
+C

n∑

k=1

ξ2

k subject to yk(w·xk+b) ≥ 1−ξk, (k = 1, ..., n)

where xk is the d-dimensional vector of features describing the kth data point and

yk is the corresponding label, either −1 or +1. f is the classifying function, whose

parameters w (the normal vector to the separating hyperplane) and b (a scalar bias

term) must be optimized. The constraint yk(w ·xk + b) ≥ 1 would result in a hard-

margin SVM—the closest point would then have distance ‖w‖−1 to the hyperplane,

so minimizing ‖w‖ under this constraint maximizes the margin. The solution for the

hyperplane can be written in terms of the support vectors which, in the hard-margin

case, are the points lying exactly on the margin (highlighted points in figure 1.1).

A soft margin is implemented by incorporating a penalty term ξk for each data

point that lies on the wrong side of the margin, and a regularization parameter C

which specifies the scaling of these penalty terms relative to the original criterion

of margin maximization. Depending on C, the optimal margin will widen and more

points will become support vectors.

For a given C there is a unique SVM solution, but a suitable value for C must

somehow be chosen. This a question of model selection which is often addressed

by cross-validation: the available training data points are divided randomly into

(say) ten non-overlapping subsets of equal size. For each of these ten subsets (or

test folds, the model is trained on the other 90% (the training fold) and tested on

the test fold. The average proportion of mistakes made across the ten test folds is

taken as the cross-validation error , and the model (in this case, the choice of C)

with the smallest cross-validation error wins.

One of the SVM’s noteworthy features is that it is a kernel algorithm (see

Schölkopf et al., 1998; Schölkopf and Smola, 2002), i.e. one which does not require

an explicit representation of the features, but which can work instead using only

a kernel matrix , a symmetric square matrix K with each element Kij equal to

some suitable measure of similarity between data point i and data point j. This

has two advantages. The first is that the time and memory requirements for

computation depend more on the number of data points than on the number of

features—a desirable property in a trial-based BCI setting since recording a few

hundred trials is relatively time-consuming, whereas each trial may be described

by a relatively large number of features. The second advantage is that one may use

non-linear similarity measures to construct K, which is equivalent to performing

linear classification on data points that have been mapped into a higher-dimensional

feature space and which can consequently yield a more powerful classifier, without

the requirement that the feature-space mapping be known explicitly (the so-

called kernel trick). However, it has generally been observed in BCI classification
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applications (for example, see Müller et al., 2003) that, given a well-chosen sequence

of preprocessing steps (an explicit feature mapping), a further implicit mapping is

usually unnecessary: thus a linear classifier, in which Kij is equal to the dot-product

between the feature representations of data points i and j, performs about as well

as any non-linear classifier one might attempt. This is often the case in situations

in which the number of data points is low, and indeed we find it to be the case in

the current application.

Thus we use a linear SVM for the current study, and this has the advantage of

interpretability: the decision boundary is a hyperplane, so its orientation may be

described by its normal vector w, which is directly interpretable in the explicitly

chosen feature space (for example, in the space of multi-channel amplitude spectra).

This vector gives us a measure of the relative importance of our features3 and as

such is useful in feature selection. In figure 1.1, where we have just two features, the

horizontal component of the hyperplane normal vector w is larger than the vertical,

which tells us what we can already see from the layout of the points, namely that

horizontal position (feature 1) is more important than vertical position (feature 2) in

separating the two classes. Some features may be entirely irrelevant to classification

(so the corresponding element of w should be close to 0). Although the SVM can

be formulated as a kernel algorithm and thus does not require explicit feature

representation, the number of relevant features relative to the number of irrelevant

features is still critical: we would prefer each dot product Kij to be dominated

by the sum of the products of relevant features, rather than this information

being swamped by the products of irrelevant (noise) features. When one has a

large number of features, good feature selection can make a large difference to

classification performance.

See Burges (1998), Müller et al. (2001) or Schölkopf and Smola (2002) for a more

comprehensive introduction to SVMs.

1.5.2 Receiver Operating Characteristic curves and the AUC measure

A Receiver Operating Characteristic (ROC) curve is a plot of a one-dimensional

classifier’s “hit” rate (for example, probability of the correct identification of a

finger-movement trial) against its “false alarm” rate (for example, probability of

misidentification of a tongue trial as a finger trial). As one varies the threshold

of the classifier, one moves along a curve in this two-dimensional space (a lower

threshold for classifying trials as finger trials results in more “hits”, but also more

“false alarms”). The area under the curve (AUC) is a very informative statistic for

the evaluation of performance of classification and ranking algorithms, as well as

for the analysis of the usefulness of features. For example, we might order all our

3. Many authors use Linear Discriminant Analysis for this purpose—we choose to use
weight vector from the SVM itself, appropriately regularized, since in theory the SVM’s
good performance relies less on parametric assumptions about the distribution of data
points, and in practice this results in a better track record as a classifier.
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data points according to their value on a particular single feature axis (say, the

amount of band power in a band centred on 10 Hz, measured by a particular sensor

at a particular time after the start of the trial) and compute the AUC score of this

ordering. An AUC of 1 indicates perfect separability: all the finger trials lie above

the highest of the tongue trials on this axis. An AUC of 0 also indicates perfect

separability: all the finger trials lie below the lowest of the tongue trials. Thus a

value close to 0 or 1 is desirable,4 whereas a value of 0.5 would indicate that the

chosen feature axis is entirely uninformative for the purposes of separating the two

classes.

ROC analysis gives rise to many attractive statistical results (see Flach, 2004, for

details and references). One attractive property of the AUC score as a measure of

feature usefulness is that it is a bounded scale, on which the three values 0, 0.5 and

1 have very clear intuitive interpretations. Another is that it is entirely insensitive

to monotonic transformations of the feature axis, relying only on the ordering of

the points, and is thus free of any parametric assumptions about the shapes of the

class distributions.

Note, however, that we use AUC scores to evaluate features in isolation from each

other, which may not give the full picture: it is easy to construct situations in which

two highly correlated features each have AUC scores close to 0.5, but in which the

sum of the two features separates classes perfectly. Therefore, analysis of individual

feature scores should go hand-in-hand with the examination of optimal directions

of separation in feature space, by examining the weight vector of a suitably trained

classifier. For the current data sets, we find that the two views are very similar, so

we plot only the AUC picture.

1.6 Preprocessing and Classification

Starting 500 msec after offset of the visual task cue, we extract a window of length

2 seconds. For each trial and each sensor, the resulting time-series is low-pass-

filtered by a zero-phase-distortion method with a smooth falloff between 45 and

50 Hz, downsampled at 100 Hz, and then linearly detrended.

Due to the downsampling, signal components at frequencies higher than 50 Hz are

no longer represented in the data. This is no great loss in EEG, since EEG cannot

in general be expected to yield much useful information at frequencies higher than

this, but it might have been possible to obtain good higher-frequency information in

ECoG and MEG. However, based on an examination of the AUC scores of individual

4. In most classical formulations, AUC scores are rectified about 0.5, there being no sense
in reporting that a classifier performs “worse than chance” with a score lower than 0.5.
However, since here it is entirely arbitrary to designate a “hit” as the correct detection
of a finger trial rather than a tongue trial, a value of 0 can be considered just as good as
a value of 1, and retaining the unrectified score in the range [0, 1] aids us in interpreting
the role of a given feature.
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frequency features in each subject’s data set, and also of the weight vector of a linear

classifier trained on the data, we did not find any indication that this information

helped in separating classes in the current task. Figure 1.2 shows typical patterns of

AUC scores before filtering and downsampling (one representative subject for each

of the three sensor types). For all frequencies, there is some “noise” in the AUC

values—depending on the number of trials available, values between about 0.4 and

0.6 will be obtained by chance. For all three sensor types, it is only below about

40–50 Hz that we see meaningful patterns in which AUC scores differ significantly

from 0.5. While the AUC representation only considers each feature in isolation, an

almost identical pattern was observed (for all subjects) in the weights of the linear

classifier, which takes linear combinations of features into account.

Therefore, our analysis is restricted to a comparison of the extent to which class-

relevant information in the 0–50 Hz range can be recovered using the different

recording techniques. It would certainly be interesting to examine the potential use

of higher-frequency information—perhaps class-relevant non-linear combinations

of high-frequency features might be discovered using non-linear classification tech-

niques, or perhaps the higher frequencies might be useful for classification when

represented in different ways, other than as amplitude spectra. However, such a

study is likely to require considerably larger data sets for individual subjects than

those we have currently available, and is beyond the scope of this chapter.

For each number of trials n from 25, in steps of 25, up to the maximum

available, we attempt to classify the first n trials performed by the subject.

Classification performance is assessed using 10-fold cross-validation, conducted

twice with different random seeds. On each of these 20 folds, only the training

fold (roughly 90% of the n trials) is used for training, and for feature and model

selection—the label information from the remaining n/10 trials is used only to

compute a final test accuracy estimate for the fold. Where necessary, model and

feature selection was performed by a second level of 10-fold cross-validation, within

the training fold of the outer cross-validation, as described by Müller et al. (2004)

and Lal et al. (2005c,a). Final performance is estimated by averaging the proportion

of correctly classified test trials across the 20 outer folds.

Before classification, a spatial filter is computed (see below), and applied to both

the training and test trials. Then, amplitude spectra are computed by the short-

time Fourier transform (STFT) method of Welch (Welch, 1967): a time series is split

into 5 segments each overlapping the next by 50%, a temporal Hanning window is

applied to each, and the absolute values of the discrete Fourier transforms of the 5

windowed segments are averaged. For each trial, this gives us a vector of 65 values

per sensor (or rather, per spatially filtered linear combination of sensors, which we

will call a “channel”) as inputs to the classifier.

We use a linear support vector machine as the classifier. First, the regularization

parameter is optimized using 10-fold cross validation within the training trial

subset. Then we employ the technique of recursive channel elimination (RCE) first

described by Lal et al. (2004). This is a variant of recursive feature elimination

(RFE), an embedded feature-selection method proposed by Guyon et al. (2002) in
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Figure 1.2: AUC scores for multichannel amplitude spectra: representative examples

from EEG, ECoG and MEG. Each curve shows the AUC scores corresponding to

the frequency-domain features from one of the available sensor outputs.
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which an SVM is trained, its resulting weight vector is examined, and the subset

of features with the lowest sum squared weight is eliminated (the features being

grouped, in our case, into subsets corresponding to channels). Then the procedure

is repeated, re-training and re-eliminating for ever-decreasing numbers of features.

We run RCE once on the complete training subset, the reverse order of elimination

giving us a rank order of channel importance. Then we perform 10-fold cross-

validated RCE within the training subset, testing every trained SVM on the inner

test fold in order to obtain an estimate of performance as a function of the number

of features. Based on the rank order and the error estimates, we reduce the number

of channels: we choose the minimum number of channels for which the estimated

error is within 2 standard errors of the minimum (across all numbers of features).

This procedure is described in more detail in Lal et al. (2005a), and embedded

feature selection methods are treated in more depth by Lal et al. (2005b). Finally,

the regularization parameter is re-optimized on the data set after channel rejection

and the classifier is ready to be trained on the training subset of the outer fold, in

order to make predictions on the test subset.

We summarize the procedure in algorithm 1.

Algorithm 1 Summary of error estimation procedure using nested cross-validation

Require: preprocessed data of one subject
1: for (n = 25 to maximum available in steps of 25) do

2: take first n trials performed by the subject
3: for (outer fold = 1 to 20) do

4: split data: 90% training set, 10% test set
5: with training set do:
6: compute spatial filter W

7: 10-fold inner CV: train SVMs to find regularization parameter C

8: 10-fold inner CV: RCE to estimate error as a function of number of channels
9: RCE on whole training set to obtain channel rank order
10: reduce number of channels
11: 10-fold inner CV: train SVMs to find regularization parameter C

12: train SVM S using best C

13: with test set do:
14: apply spatial filter W

15: reject unwanted channels
16: test S on test set
17: save error
18: end for

19: end for

Output: estimated generalization error (mean and standard error across outer folds)

1.6.1 Spatial Filtering

A spatial filter is a vector of weights specifying a linear combination of sensor

outputs. We can represent our signals as an s-by-t matrix X, consisting of s
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time series, each of length t, recorded from s different sensors. Spatial filtering

amounts to a premultiplication X ′ = WX, where W is an r-by-s matrix consisting

of r different spatial filters. If an appropriate spatial filter is applied before any

non-linear processing occurs (such as the non-linear step of taking the absolute

values of a Fourier transform to obtain an amplitude spectrum), then classification

performance on the resulting features will often improve. This is illustrated in

figure 1.3, where the AUC scores of the amplitude spectra from one subject in

the EEG experiment are considerably better on both training and test folds if

the correct spatial filters have been applied. We compare three spatial filtering

conditions: no spatial filtering (where W is effectively the identity matrix, so

we operate on the amplitude spectra of the raw sensor outputs), Independent

Components Analysis (described in section 1.6.1.1) and Common Spatial Pattern

filtering (described in section 1.6.1.2).

.

1.6.1.1 Independent Component Analysis (ICA)

Concatenating the n available trials to form s long time series, we then compute

a (usually square) separating matrix W that maximizes the independence of the

r outputs. This technique is popular in the analysis of EEG signals because it is

an effective means of linear blind source separation, in which differently weighted

linear mixtures of the signals of interest (“sources”) are measured, and must be

“de-mixed” to estimate the sources themselves: since EEG electrodes measure

the activity of cortical sources through several layers of bone and tissue, the

signals are spatially quite “blurred” and the electrodes measure highly correlated

(roughly linear) mixtures of the signals of interest. To find a suitable W we use an

ICA algorithm based on the Infomax criterion (as implemented in EEGLAB—see

Delorme and Makeig (2004)) which we find to be comparable to most other available

first-order ICA algorithms in terms of resulting classification performance, while at

the same time having the advantage of supplying more consistent spatial filters

than many others. Note that, due to the large amount of computation required in

the current study, we compute W based on all n trials rather than performing a

separate ICA for each outer training/test fold. Target label information is not used

by ICA, so there is no overfitting as such, but it could potentially be argued that

the setting has become unrealistically “semi-supervised” since the (computationally

expensive) algorithm training cannot start until the novel input to be classified has

been measured. However, by performing a smaller set of pilot experiments (two

values of n for each subject, and only 10 outer folds instead of 20) in which ICA

was recomputed on each outer fold, we were able to verify that this did not lead

to any appreciable difference in performance, either for individual subjects or on

average.
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Figure 1.3: Effects of spatial filtering on subject 104 in the EEG experiment. In the

left-hand column, we see AUC scores for the amplitude spectra of the odd-numbered

trials (a total of 200), and on the right we see AUCs on the even-numbered trials

(also 200). In the top row there is no spatial filtering, in the middle there we have

applied a square filter matrix W obtained by ICA (section 1.6.1.1) on the odd-

numbered trials, and in the bottom row we have applied a square W obtained by

CSP (section 1.6.1.2) on the odd-numbered trials
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1.6.1.2 Common Spatial Pattern (CSP) analysis

This technique (due to Koles et al., 1990) and related algorithms (Wang et al., 1999;

Dornhege et al., 2003b; Lemm et al., 2004; Dornhege et al., 2004b) are supervised

methods for computing spatial filters whose outputs have maximal between-class

differences in variance. For this to be useful, the input to the algorithm must be

represented in such a way that class-dependent changes in the signal are reflected in

a change in signal variance: for event-related desynchronization in motor imagery,

this can be achieved by applying a zero-phase-distortion band-pass filter which

captures the part of the spectrum in which sensorimotor rhythms are expressed: the

variance of the filtered signal, which has zero mean, is a measure of amplitude in the

chosen band. Here we use a bandpass filter between 7 and 30 Hz (we generally found

that this broad band performed approximately as well as any specifically chosen

narrow band). Often, the variances of the spatially filtered channels themselves

(forming a feature vector v = [v1 . . . vr]) are used as features for classification. This

makes sense given that the algorithm aims specifically to maximize class differences

in this statistic, and it is a convenient way of reducing the dimensionality of the

classification problem. In section 1.7.3 we will adopt this approach, discarding the

subsequent channel selection stage to save processing time. However, we were able

to obtain slightly better performance on the EEG data sets by applying the spatial

filters obtained by CSP to the whole (unfiltered) signal, then computing Welch

spectra and classifying as described above. Therefore we report the latter results in

section 1.7.1.

Since CSP uses label information, it must be performed once for each outer

training/test fold, using the training subset only. The drawback to CSP is its

tendency to overfit, as illustrated in figure 1.4 where we have taken 200 trials

from one subject in the 39-channel EEG experiment (upper panel), and 200 trials

from the same subject in the 150-channel MEG experiment (lower panel). In each

case we have trained the CSP algorithm on half of the available data, and applied

the resulting spatial filters W to the other half. We retain the maximum number of

spatial patterns, r = s, and plot the AUC scores of the features v1 . . . vr, lighter bars

denoting separation of the training trials and darker bars denoting separation of

the test trials. In the lower panel we see that, when the algorithm is given a larger

number of channels to work with, it finds many linear combinations of channels

whose amplitude in the 7–30 Hz band separates the classes nearly perfectly (AUC

scores close to 0 or 1). However, the large majority of these patterns tell us nothing

about the test trials—only the last two spatial patterns separate the test trials well.

In the EEG context, we see that overfitting occurs, but to a lesser extent.5

5. The overfitting effect in EEG can also be seen by comparing the left and right panels
in the bottom row of figure 1.3, paying particular attention to the centre of the desired
7–30 Hz band.
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Figure 1.4: Large differences in performance of the CSP algorithm on training

data (grey bars) and test data (black bars), as indicated by an AUC measure of

class separability computed separately for the projected variance on each spatial

pattern. This overfitting effect is extremely pronounced in 150-channel MEG (lower

panel), and less so in 39-channel EEG (upper panel). Crosses show the eigenvalues

corresponding to each spatial pattern in the CSP decomposition.
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The lines of crosses indicate the eigenvalues returned by the CSP algorithm’s

diagonalization of the whitened class covariance matrix (see Müller-Gerking et al.,

1999; Lemm et al., 2004, for an accessible account of the algorithm details).

These are in the range [0, 1] and are an indicator of the amount of between-

class difference in variance that each spatial pattern is able to account for. Values

close to 0.5 indicate the smallest differences and values close to 0 or 1 denote the

largest differences and therefore potentially the most useful spatial patterns. The

eigenvalues tell us something related, but not identical, to the AUC scores. In the

end we are interested in the classifiability of single trials in as-yet unseen data. The

eigenvalues are only an indirect measure of single-trial classifiability, since they tell

us about the fractions of variance accounted for across many trials. Variance is not

a robust measure, so a large eigenvalue could arise from very high SMR-modulation

in just a small minority of the trials, with the majority of the trials being effectively

inseparable according to the spatial pattern in question. AUC scores, on the other

hand, are a direct measure of trial separability according to individual features.

Hence, AUC scores on the data that the CSP algorithm has not seen (black bars

in figure 1.4) are our standard for evaluating the generalization performance of

each spatial pattern. By contrast, AUC scores computed from the training trials

alone (grey bars) show a grossly inflated estimate of performance, which illustrates

the overfitting effect. The eigenvalues show a somewhat intermediate picture. On

the one hand, they are computed only on the training trials, and accordingly their

magnitude is clearly better predicted by looking at the AUC on training trials than

at the AUC on test trials. On the other hand, they also contain information that,

in the current examples, allows us to identify which components are really useful

according to our standard (tallest black bars). First, by sorting the spatial patterns

by eigenvalue, we have correctly sorted the useful components to the extreme ends

of the plot. Second, the useful patterns are identifiable by an acceleration in the

eigenvalue spectrum towards the ends (c.f. Wang et al., 1999).

In practice, the eigenvalues are a fairly good and often-used predictor of the

generalization performance of each spatial pattern. Some such predictor is necessary,

since CSP’s overfitting will often lead to poor generalization performance. Standard

remedies for this employ a feature selection stage after CSP, with the aim of

retaining only those spatial patterns that are likely to be useful. Selection strategies

may vary: one common approach is to take only the first k in patterns, in the

order of preference indicated by the eigenvalues, number k being either fixed, or

determined by cross-validation of the CSP algorithm within the training set. The

results reported in section 1.7.1 employ this strategy with k fixed at 5, which we

found to produce results roughly as good as a cross-validation strategy.6

6. One may also attempt to perform channel selection after CSP, without using the
eigenvalues or cross-validating the CSP algorithm itself, but this is hampered by the fact
that the training data have been transformed by an algorithm that overfits on them: cross-
validation error rates in subsequent model and feature selection tend to be uninformatively
close to 0, and classifiers end up under-regularized. To investigate a possible workaround
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In section 1.7.3 we employ an additional tactic: since the degree of overfitting

is determined largely by the number of free parameters in the optimization, and

the algorithm finds one scaling parameter per sensor in each spatial pattern, it

makes sense to attempt to reduce the number of sensors used as input to the

CSP algorithm. We do this using a preliminary step in which Welch spectra of

the raw sensor outputs are computed, an SVM is trained (cross-validating to find

the best regularization parameter) and the weight vector is used to provide a

measure of relative channel importance, as in RCE. Going back to the time-domain

representation, the top 10, 25, 39 and (in ECoG and MEG) 55 sensors found by

this method were then passed into CSP. Spatial patterns were then chosen by

a cross-validation method: CSP was run on each of 10 inner training folds and

variances v1 . . . vr were computed on the corresponding test fold and saved. At

the end of cross validation, each trial then had a new representation v, and AUC

scores corresponding to each of these features could be computed on the whole

outer training fold, and these are useful for selection since they generally correlate

well with the AUC scores on unseen data. The significance of the AUC values was

expressed in terms of the standard deviation expected from random orderings of

a data set of the same size. Eigenvalue positions with AUC scores more than 2

standard deviations away from 0.5 were retained in the outer CSP.

1.7 Results

1.7.1 Performance of spatial filters using all available sensors

In figure 1.5, classification accuracy is plotted as a function of n for each subject,

along with average performance in each of the three experiments (EEG, ECoG and

MEG). We plot the time-course of the overall effectiveness of the experimental

setup, subject and classifier taken all together: our curves are obtained by comput-

ing performance on the first 25 trials performed by the subject, then recomputing

based on the first 50 trials, and so on (instead of on a random 25 trials, then a

random 50 trials). As a result the observed changes in performance with increasing

n reflect not only effect of the amount of input on classifier performance, but also

for this, we tried splitting each training set into two partitions: one to be used as input to
CSP to obtain spatial filters W , and the other to be transformed by W and then used in
channel selection and classifier training as described above. We experimented with a 25:75
percent partition, as well as 50:50 and 75:25, of which 50:50 was found to be the best for
nearly all values of n. However, the resulting performance was worse than in the simpler
strategy of performing CSP on the whole training set and taking the best 5 eigenvalues—
the reduction in the number of trials available for CSP exacerbates the overfitting problem
to an extent that is not balanced out by the improvement in feature and model selection.
The results of the partition experiments are not shown.
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changes in the subjects’ performance, whether due to practice, fatigue or transient

random influences.

Note that, for 2 out of 8 subjects in the EEG condition (subjects 101 and 102),

and 1 out of 10 in MEG (subject 303), we were never able to classify at significantly

better than chance level. These subjects were omitted from the averaging process

and from the further analysis of section 1.7.3. The strength of sensorimotor rhythms,

and the degree to which their modulation with imagined movement is measurable,

varies from person to person. One must expect that some subjects will be unable

to use a motor-imagery-based BCI at all, and that performance of the remainder

will vary between individuals. Given the necessarily small size of our three subject

groups, we are unable to draw strong conclusions as to the effect of recording

technology on absolute performance level, to say for example whether MEG is a

significantly better option than EEG. Another effect of between-subject variation is

that, though we find certain individual subjects in all three groups who are able to

attain high performance levels (say, > 90%), average performance is poor. However,

it should be borne in mind that, with one exception,7 the subjects had never taken

part in a motor-imagery BCI experiment before, and that performance is therefore

based on a maximum of three hours’ experience with the paradigm, and without

feedback.

In the EEG experiment, both ICA (grey asterisks) and CSP (open diamonds)

allow very large improvements in performance relative to the condition in which no

spatial filtering was used (filled circles). This effect is clear in the averaged data as

well as in the individual subject plots. In ECoG, the difference between ICA and

no spatial filtering is slight, although ICA is at least as good as no spatial filtering

for all four subjects; CSP is consistently a little worse than either. In MEG, there

is no consistent benefit or disadvantage to ICA over the raw sensor outputs, and

again CSP is worse, this time by a larger margin.

The failure of CSP in ECoG and MEG is likely to be related to the overfitting

effect discussed above. This is clearest for subject 310 when 200 trials are used:

although spatial filters exist (and have been found by ICA) which can improve

classification performance, CSP fails to find any patterns which help to classify the

data, because useless (overfitted) spatial patterns dominate the decomposition of

the class covariance matrices.

Overall, maximum performance can be achieved using about 200 trials in EEG

and 75–100 trials in MEG. For ECoG, though it is harder to draw strong conclusions

due to the smaller number of subjects and trials, it generally appears that the curves

are even flatter: the best results can already be obtained with only 25–50 trials.

One curious feature of the results is the strikingly good performance without

spatial filtering for some subjects (103, 104, 107, 108, 302, and 308) when only the

first 25 trials are tested, quickly dropping to much poorer performance when more

7. The exception is subject 308 in the MEG condition, who had previously taken part in
the EEG condition—106 and 308 are the same person.
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Figure 1.5: For each subject, classification accuracy is plotted as a function of the

number of trials performed and the spatial filtering method employed: filled circles

denote no spatial filtering, asterisks denote ICA, and open diamonds denote CSP.

The last three plots show averages, for the EEG, ECoG and MEG experiments

respectively, across all subjects for whom classification had been possible at all.
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trials are taken. A possible explanation for this lies in the fact that the test trials on

each outer fold were drawn uniformly and randomly from the first n trials—when

n is very small, this means that the test trials were performed, on average, closer

in time to the training trials than when n is larger. If the subjects’ signals exhibit

properties that are non-stationary over time, this may lead to an advantage when

the training and test trials are closer together. Such effects merit a more in-depth

analysis which is beyond the scope of this report.

1.7.2 Topographic interpretation of results

Figure 1.6 shows topographic maps of the features selected by our analysis, for

seven of our subjects. Sensor ranking scores were obtained by Recursive Channel

Elimination on data that had not been spatially filtered: each of the 20 outer train-

ing/test folds of the analysis returned a channel ranking, and these ranks were

averaged across folds and then divided by their standard deviation across folds.

The result indicates which channels were ranked highly most consistently (darker

colours indicating channels ranked as more influential). We also plot spatially inter-

polated projected amplitudes8 for the top two independent components (selected

by Recursive Channel Elimination in the first outer training/test fold) and the first

two spatial patterns (indicated by the best two eigenvalues in the first outer fold).

In general, we see that ICA and CSP recover very similar patterns of activation

which are consistent with the modulation of activity in motor and pre-motor cortical

areas. In EEG, both algorithms recover patterns centred on C4/CP4 in the right

hemisphere (where we would expect modulation associated with imagined left hand

movement) and C3/CP3 in the left (imagined right hand movement). In MEG, we

see patterns consistent with parietal-central and central-frontal dipoles in the right

hemisphere where we would expect to see modulation associated with imagined

left hand movement. Subject 308 appears to use sources in both hemispheres—

possibly a bilateral representation of tongue movement. In the ECoG, the top

two independent components and the top spatial pattern are all highly localized,

activation in each case being focused on just three or fewer electrodes located above

the motor cortex.

For subjects 202, 304 and 306, the second spatial pattern shows a more compli-

cated topography. Given that CSP generally performs less well than ICA for these

subjects, we may suspect that this is a reflection of overfitting. Presented with a

large number of sensors, the algorithm can account for class differences in signal

variance by combining sensors in spatial configurations that are more complicated

than necessary, which in turn results in poorer generalization performance.

8. Each map is spline-interpolated from a single column of the mixing matrix W−1, the
inverse of the spatial filter matrix. The column corresponding to a given source tells us
the measured amplitude of that source as a function of sensor location.
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Figure 1.6: Topographic maps showing the ranking or weighting of sensors at differ-

ent spatial locations, for three EEG subjects, one ECoG subject, and three MEG

subjects. Sensor ranking scores (first column) are obtained by Recursive Channel

Elimination on the data when no spatial filtering is used. The top two independent

components (columns 2–3) are selected by Recursive Channel Elimination after In-

dependent Component Analysis. The top two spatial patterns (columns 4–5) are

selected using the eigenvalues returned by the CSP algorithm. Topographic maps

are scaled from -1 (black) through 0 (grey) to 1 (white) according to the maximum

absolute value in each map.
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Finally, we note that the ranking scores of the raw sensors, while presenting a

somewhat less tidy picture, generally show a similar pattern of sensor importance

to that indicated by the ICA and CSP maps (note that the ranking score patterns

may reflect information from influential sources beyond just the first two compo-

nents that we have shown). The sensors ranked most consistently highly are to be

found in lateralized central and pre-central regions, bilaterally for the EEG exper-

iment and for subject 308, and with a right-hemisphere bias for the others. For

further examination of the performance of Recursive Channel Elimination in the

identification of relevant source locations, see Lal et al. (2004), Lal et al. (2005c)

and Lal et al. (2005a).

1.7.3 Effect of sensor subsetting

In figure 1.7 we show average classification accuracy at n = 25, 50, 100 and 200

(respectively in the four rows from top to bottom) for EEG, ECoG and MEG (left

to right). Classification performance of CSP is shown as a function of the number

of sensors the algorithm is permitted to work with (“more” denoting the maximum

available: 64, 74 or 84 in ECoG, and 150 in MEG).

First we note that, in our EEG data, performance is better the more sensors

are used, up to the maximum of 39 available in the current study. For ECoG and

MEG, this trend is reversed when the number of available trials is small. This is in

line with our intuition about overfitting: we suffer when attempting to recombine

too many channels based on a small number of data points. For n = 25, s = 10

is the best number of sensors to choose, and CSP performance may then equal

(and even exceed, although the difference is not significant) the best classification

previously possible with ICA (in ECoG) or with the raw sensors outputs (in MEG).

As the number of trials n increases to 50 and beyond, the peak shifts to the left

(it is useful to have more sensors available as the number of trials increases) and

the slope becomes shallower as the difference between CSP and the raw sensors

diminishes (overfitting becomes less of an issue).

1.8 Summary

We have compared the classifiability of signals obtained by EEG, ECoG and MEG in

a binary, synchronous motor-imagery-based Brain-Computer Interface. We held the

time interval, and (after failing to find any information useful for the classification in

frequencies above 50 Hz) also the sampling frequency, constant across sensor types,

and classified event-related desynchronization effects in the signals’ amplitude

spectra using regularized Support Vector Machines and automatic feature selection.

We varied the number of trials used, in order to see how quickly we might reach

maximum classification performance with our unpractised subjects. Maximum

performance, averaged across subjects, was roughly equal across sensor types at

around 80%, although subject groups were small and between-subject variation was
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Figure 1.7: Filled triangles indicate average classification accuracy of the CSP

algorithm for each sensor type (EEG, ECoG and MEG respectively in the three

columns from left to right), as a function of the number of sensors used as input

to the algorithm, and the number of trials (25, 50, 100 and 100 respectively in the

four rows from top to bottom). For comparison, horizontal chains of symbols denote

the average performance levels reported in the previous analysis of figure 1.5: filled

circles for no spatial filtering, asterisks for ICA, open diamonds for CSP with a

fixed number of patterns k = 5.
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large, so we attach no particular weight to this observation. Maximum performance

was attained after about 200 trials in EEG, 75–100 trials in MEG, and 25–50 trials

in ECoG.

Performance was affected by spatial filtering strategy in a way that depended

on the recording hardware. For EEG, where signals are highly spatially blurred,

spatial filtering is crucial: large gains in classification accuracy were possible using

either first-order Independent Component Analysis or the Common Spatial Pattern

algorithm, the performance of these two approaches being roughly equal. For ECoG

and MEG, as one might expect from systems that experience less cross-talk between

channels, spatial filtering was less critical: the MEG signals were the “cleanest” in

this regard, in that there was no appreciable difference in performance between

classification of the raw sensor outputs and classification of any of the linear

combinations of sensors we attempted. First-order spatial filtering would appear to

be become largely redundant for the detection of event-related desynchronization

as the volume conduction problem diminishes (down to the level at which it is still

present in ECoG and MEG).

Across all three conditions, ICA was the best (or roughly equal-best) spatial

filtering strategy. CSP suffered badly from overfitting in the ECoG and MEG

conditions when large numbers of sensors (> 40) were used, resulting in poor

generalization performance. This could be remedied by sparsification of the spatial

filters, where a subset of the sensors was selected and the rest discarded—a strategy

that was particularly effective when the number of trials was very small, but which

never resulted in a significant overall win for optimized spatial filters as against raw

sensor outputs. We did not find a convincing advantage, with any of the three sensor

types, of supervised optimization of the spatial filters over blind source separation.
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